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Abstract. Making use of anansatzfor the eigenfunctions, we obtain an exact closed-form
solution to the non-relativistic Saidinger equation with the anharmonic potentidl(r) =
ar? +br~* + ¢r~% in two dimensions, where the parameters of the potential, and¢ satisfy
some constraints.

1. Introduction

The exact solutions to the fundamental dynamical equations play crucial roles in physics.
It is well known that exact solutions to the Sodinger equation are possible only for
several potentials and that some approximation methods are frequently applied to arrive at
the solutions. On the other hand, in recent years, the higher-order anharmonic potentials
have attracted much more attention from physicists and mathematicians [1-3]. Interest in
these anharmonic oscillator-like interactions stems from the fact that, in many cases, the
study of the relevant Scédinger equation, for example in atomic and molecular physics,
provides us with insight into the physical problem in question.

Recall that in three-dimensional spaces, roughly speaking, there are two main methods
to be used to deal with the anharmonic potentiél®) = ar? + br=* + cr=5. One [4,5]
is based on aansatzfor the eigenfunctions to obtain an exact solution with this potential.
This method undoubtedly provides an exact solution for the ground state but sometimes
with some constraints on the parameters of the potential. The other method [6, 7] relies on
a Laurent serieansatzfor the eigenfunctions, which converts the Sidinger equation into
a difference equation and then the continued fraction solutions are defined. This method,
however, does not give any constraints for the parameters of the potential.

The reason we write this paper is as follows. On the one hand, with the advent of growth
technique for the realization of the semiconductor quantum wells, the quantum mechanics of
low-dimensional systems has become a major research field: almost all of the computational
technique developed for three-dimensional problems has already been extended to lower
dimensions. On the other hand, study of the poteritial) = ar? + br=* + cr=% in two
dimensions has never appeared in the literature. We now attempt to research it in two
dimensions.
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This paper is organized as follows. In section 2, we study the ground state of the
Schibdinger equation with this potential using ansatzfor the eigenfunctions. The first
excited state will be discussed in the same way in section 3. Some constraints on the
parameters of the potential, b, c are given in sections 2 and 3. The figures for the
unnormalized radial functions are plotted in the last section.

2. The ground states

Throughout this paper the natural uhit= 1 andu = % are employed. Consider the
Schibdinger equation with a potenti (») that depends only on the distancdrom the
origin

Hy = (33r3+38—2)w+vmw:&/f @)
ror or  r29¢?

where the potential

V(r)y=ar®>+br*+cr ® a>0, c¢>0. (2)
Owing to the symmetry of the potential, let

W (r, 9) =r V2R, (r)etme m=0,12,... (3)
where the radial wavefunctioR,, (r) satisfies the radial equation

2 1
dz';;”z(” + [E ~vin =" "‘} R(r) =0 (4a)

wherem and E denote the angular momentum and energy, respectively. For the solution
of (4a), we make aransatz[4, 5] for the ground state

Rino(r) = exp[pmo(r)] (5)
where

Pmo(r) = Sar® + 3pr? +«Inr. (6a)
After calculating, we arrive at the following equation

2 2 2

Thootr) [d Dol 1 (222 ] Ruolr) = 0. (@)
We compare equation #3 with equation (4) and obtain the following set of equations

a® =a, gZ=c (78)

Icz—lc—Zaﬁ:mz—%1 (7b)

38 —2Bk =b (70)

E = —(2¢ + D). (7d)

It is easy to obtain the values of parametersggs(r) from equations (@) and () written
as

o = +4/a; B = +4/c; k=3 +/m?+2ac. (8)

In order to retain the well-behaved solution at the origin and at infinity, we choose a positive
sign inx and negative signs ia and 8. Accordingly, equation (@) leads to the following
constraint on the parameters of the potential,

(b + 21/ — 4c (m? + 2 /ac) = 0. (©)
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The eigenvalues, however, will be given from equation {J as

b
E = 44 —). 10
ﬁ( n ﬁ) (10)
Now, the corresponding eigenfunctions equation (5) can be read as
Ryo(r) = Nor* expl-3(var? + y/cr~?))] (11)

where Ny is the normalized constant. Here and hereafter % + m2 4+ 2 /ac.

3. The first excited states

In the same spirit, we make amsatz for the eigenfunctions corresponding to the first
excited state in the potential (2) as follows

Ryu1(r) = fin(r) explpm1(r)] (12)
with f,,(r) given by

fu(r) = av+ azr® + azr™? (13)
and p,,1(r) given by

pmi(r) = Soar® + 3p1r? + k1 Inr. (6b)

Briefly, it is easy to see from equations (12) and (13) that the radial fun®jarir) has
the following relation

fu )+ 2pm1<r>/fm<r>/)} R =0 (&)

Jm(r)

where the prime denotes the derivative of the radial function with respect to the variable
Calculating equation @ carefully and comparing it with equationd}} we obtain

Ru1(r)" — [pml(r)” + (Pm1(r))? + (

a2l E — Va(21+ 5] =0, aslb — e, — 7] =0 (149)
ai[E — a2y + D] = ap[m® — 3 + 2J/ac — «% — 3k1 — 2] (14b)
ai[m? — 3 + 2Jac — k¥ + k1] = azlb — V(21 + D] + as[—E + Va2, — 3] (140)
ai[b — V(21 — 3)] = —az[m® — % + 2/ac — k? + 5k1 — 6] (14d)
o = +/a, p1 = E+/c. (14e)

Hence, if the angular momentum of the first excited state is the same as that of the ground
state, we obtain from equation (14)

_b+T7c

=7 E1= a5+ 2«1) (15a)
ap=0 a;=+/a as = —+/c (15b)
Br=—+c a1 =—+a (150)
b=—6Jc (15d)

where the constants both and 8, are given negative signs in order to maintain the well-
behaved nature of the solutionat- 0 andr — oco. Equation (1%) is another constraint
on the parameters of the potential.
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Figure 1. The ground state Wavefunctiomé)o) (r) as a function of- for the potential (2) with
the valuesa = 1.0, b = —12 andc = 4 in two dimensions. The-axis denotes the values of
radial wavefunctions and the-axis denotes the variable

At last, the eigenvalué&; and eigenfunction®,,1(r) for the first excited state with the
potential (2) may be read from equations ¢)1%and (12) as follows

b
E1=+a (12+ %) (16)
Ru1(r) = Ni(apr? + azr=2)r exp[—-3(vVar® + J/cr2)] 17)

where N; is the normalized constant for the first excited state andis given by
equation (1Bb).

As a matter of fact, the normalized constag and N; can be calculated in principle
from the normalized relation

/0 |Ryi|?dr = 1 i=0,1 (18)

Considering the values of the parameters of the potential, we fix them as follows. The
value of parameter is first fixed: for exampler = 1.0. The values of the parametersnd
b are determined by the constraints equation (9) and equatiaf) {@6m = 0. In this way,
the corresponding parameters turn out toabe 1.0, ¢ =4, b = —12,k = 2.5, k3 = 0.5,

a; = 1,a3 = —2. The ground state and the first excited state energies corresponding to
these values are obtained B = —2 and E1 = 6, respectively. Actually, when we study

the properties of the ground state and the first excited state, as we know, the unnormalized
radial wavefunctions will not affect the main features of the wavefunctions. We have plotted
the unnormalized radial wavefunctio®y, (i = 0, 1) in figures 1 and 2 for the ground state

and the first excited states, respectively. Comparing them with the figures for the ground
state and the first excited state in three dimensions, respectively, it is easy to find that they
are different from each other. The reason is that the parameters of the potertralc,

are not same as those in three dimensions. This arises from the different constraints on
the parameters of the potential, even if the parametsrthe same in both two and three
dimensions.

To summarize, we discuss the ground state and the first excited state for thdiggar
equation with the potentiaV (r) = ar? + br=* 4 cr~® using a simpleransatz for the
eigenfunctions; simultaneously two constraints for the parameters of the potential are arrived
at from the compared equations, which then results in the variety for the energy eigenvalue
and eigenfunctions with the varieties of the parameters of the potential. This simple and
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Figure 2. The ground state wavefunctionlé)l> (r) as a function of- for the potential (2) with
the same parameter values in two dimensions. yHagis denotes the values of wavefunctions
and thex-axis denotes the variable

intuitive method is easily generalized. Other studies, for the sextic potential and the octic
potential as well as the inverse potential in two dimensions are in progress.
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