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Abstract. Making use of anansatz for the eigenfunctions, we obtain an exact closed-form
solution to the non-relativistic Schrödinger equation with the anharmonic potential,V (r) =
ar2+ br−4+ cr−6 in two dimensions, where the parameters of the potential,a, b andc satisfy
some constraints.

1. Introduction

The exact solutions to the fundamental dynamical equations play crucial roles in physics.
It is well known that exact solutions to the Schrödinger equation are possible only for
several potentials and that some approximation methods are frequently applied to arrive at
the solutions. On the other hand, in recent years, the higher-order anharmonic potentials
have attracted much more attention from physicists and mathematicians [1–3]. Interest in
these anharmonic oscillator-like interactions stems from the fact that, in many cases, the
study of the relevant Schrödinger equation, for example in atomic and molecular physics,
provides us with insight into the physical problem in question.

Recall that in three-dimensional spaces, roughly speaking, there are two main methods
to be used to deal with the anharmonic potentialsV (r) = ar2 + br−4 + cr−6. One [4, 5]
is based on anansatzfor the eigenfunctions to obtain an exact solution with this potential.
This method undoubtedly provides an exact solution for the ground state but sometimes
with some constraints on the parameters of the potential. The other method [6, 7] relies on
a Laurent seriesansatzfor the eigenfunctions, which converts the Schrödinger equation into
a difference equation and then the continued fraction solutions are defined. This method,
however, does not give any constraints for the parameters of the potential.

The reason we write this paper is as follows. On the one hand, with the advent of growth
technique for the realization of the semiconductor quantum wells, the quantum mechanics of
low-dimensional systems has become a major research field: almost all of the computational
technique developed for three-dimensional problems has already been extended to lower
dimensions. On the other hand, study of the potentialV (r) = ar2 + br−4 + cr−6 in two
dimensions has never appeared in the literature. We now attempt to research it in two
dimensions.
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This paper is organized as follows. In section 2, we study the ground state of the
Schr̈odinger equation with this potential using anansatz for the eigenfunctions. The first
excited state will be discussed in the same way in section 3. Some constraints on the
parameters of the potentiala, b, c are given in sections 2 and 3. The figures for the
unnormalized radial functions are plotted in the last section.

2. The ground states

Throughout this paper the natural unit ¯h = 1 andµ = 1
2 are employed. Consider the

Schr̈odinger equation with a potentialV (r) that depends only on the distancer from the
origin

Hψ =
(

1

r

∂

∂r
r
∂

∂r
+ 1

r2

∂2

∂ϕ2

)
ψ + V (r)ψ = Eψ (1)

where the potential

V (r) = ar2+ br−4+ cr−6 a > 0, c > 0. (2)

Owing to the symmetry of the potential, let

ψ(r, ϕ) = r−1/2Rm(r)e
±imϕ m = 0, 1, 2, . . . (3)

where the radial wavefunctionRm(r) satisfies the radial equation

d2Rm(r)

dr2
+
[
E − V (r)− m

2− 1
4

r2

]
Rm(r) = 0 (4a)

wherem andE denote the angular momentum and energy, respectively. For the solution
of (4a), we make anansatz[4, 5] for the ground state

Rm0(r) = exp[pm0(r)] (5)

where

pm0(r) = 1
2αr

2+ 1
2βr

−2+ κ ln r. (6a)

After calculating, we arrive at the following equation

d2Rm0(r)

dr2
−
[

d2pm0(r)

dr2
+
(

dpm0(r)

dr

)2
]
Rm0(r) = 0. (4b)

We compare equation (4b) with equation (4a) and obtain the following set of equations

α2 = a, β2 = c (7a)

κ2− κ − 2αβ = m2− 1
4 (7b)

3β − 2βκ = b (7c)

E = −(2κ + 1)α. (7d)

It is easy to obtain the values of parameters forpm0(r) from equations (7a) and (7b) written
as

α = ±√a; β = ±√c; κ = 1
2 ±

√
m2+ 2

√
ac. (8)

In order to retain the well-behaved solution at the origin and at infinity, we choose a positive
sign in κ and negative signs inα andβ. Accordingly, equation (7c) leads to the following
constraint on the parameters of the potential,

(b + 2
√
c)2− 4c

(
m2+ 2

√
ac
) = 0. (9)
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The eigenvalueE, however, will be given from equation (7d) as

E = √a
(

4+ b√
c

)
. (10)

Now, the corresponding eigenfunctions equation (5) can be read as

Rm0(r) = N0r
κ exp[− 1

2(
√
ar2+√cr−2)] (11)

whereN0 is the normalized constant. Here and hereafterκ = 1
2 +

√
m2+ 2

√
ac.

3. The first excited states

In the same spirit, we make anansatz for the eigenfunctions corresponding to the first
excited state in the potential (2) as follows

Rm1(r) = fm(r) exp[pm1(r)] (12)

with fm(r) given by

fm(r) = a1+ a2r
2+ a3r

−2 (13)

andpm1(r) given by

pm1(r) = 1
2α1r

2+ 1
2β1r

−2+ κ1 ln r. (6b)

Briefly, it is easy to see from equations (12) and (13) that the radial functionRm1(r) has
the following relation

Rm1(r)
′′ −

[
pm1(r)

′′ + (pm1(r)
′)2+

(
fm(r)

′′ + 2pm1(r)
′fm(r)′

fm(r)

)]
Rm1(r) = 0 (4c)

where the prime denotes the derivative of the radial function with respect to the variabler.
Calculating equation (4c) carefully and comparing it with equation (4a), we obtain

a2[E −√a(2κ1+ 5)] = 0, a3[b −√c(2κ1− 7)] = 0 (14a)

a1[E −√a(2κ1+ 1)] = a2
[
m2− 1

4 + 2
√
ac − κ2

1 − 3κ1− 2
]

(14b)

a1
[
m2− 1

4 + 2
√
ac − κ2

1 + κ1
] = a2[b −√c(2κ1+ 1)] + a3[−E +√a(2κ1− 3)] (14c)

a1[b −√c(2κ1− 3)] = −a3
[
m2− 1

4 + 2
√
ac − κ2

1 + 5κ1− 6
]

(14d)

α1 = ±
√
a, β1 = ±

√
c. (14e)

Hence, if the angular momentumm of the first excited state is the same as that of the ground
state, we obtain from equation (14)

κ1 = b + 7
√
c

2
√
c

E1 =
√
a(5+ 2κ1) (15a)

a1 = 0 a2 =
√
a a3 = −

√
c (15b)

β1 = −
√
c α1 = −

√
a (15c)

b = −6
√
c (15d)

where the constants bothα1 andβ1 are given negative signs in order to maintain the well-
behaved nature of the solution atr → 0 andr →∞. Equation (15d) is another constraint
on the parameters of the potential.
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Figure 1. The ground state wavefunctionsR(0)0 (r) as a function ofr for the potential (2) with
the valuesa = 1.0, b = −12 andc = 4 in two dimensions. They-axis denotes the values of
radial wavefunctions and thex-axis denotes the variabler.

At last, the eigenvalueE1 and eigenfunctionsRm1(r) for the first excited state with the
potential (2) may be read from equations (15a) and (12) as follows

E1 =
√
a

(
12+ b√

c

)
(16)

Rm1(r) = N1(a2r
2+ a3r

−2)rκ1 exp[− 1
2(
√
ar2+√cr−2)] (17)

where N1 is the normalized constant for the first excited state andκ1 is given by
equation (15a).

As a matter of fact, the normalized constantsN0 andN1 can be calculated in principle
from the normalized relation∫ ∞

0
|Rmi |2dr = 1 i = 0, 1. (18)

Considering the values of the parameters of the potential, we fix them as follows. The
value of parametera is first fixed: for examplea = 1.0. The values of the parametersc and
b are determined by the constraints equation (9) and equation (15d) for m = 0. In this way,
the corresponding parameters turn out to bea = 1.0, c = 4, b = −12, κ = 2.5, κ1 = 0.5,
a2 = 1, a3 = −2. The ground state and the first excited state energies corresponding to
these values are obtained asE0 = −2 andE1 = 6, respectively. Actually, when we study
the properties of the ground state and the first excited state, as we know, the unnormalized
radial wavefunctions will not affect the main features of the wavefunctions. We have plotted
the unnormalized radial wavefunctionsRi0, (i = 0, 1) in figures 1 and 2 for the ground state
and the first excited states, respectively. Comparing them with the figures for the ground
state and the first excited state in three dimensions, respectively, it is easy to find that they
are different from each other. The reason is that the parameters of the potential,b and c,
are not same as those in three dimensions. This arises from the different constraints on
the parameters of the potential, even if the parametera is the same in both two and three
dimensions.

To summarize, we discuss the ground state and the first excited state for the Schrödinger
equation with the potentialV (r) = ar2 + br−4 + cr−6 using a simpleransatz for the
eigenfunctions; simultaneously two constraints for the parameters of the potential are arrived
at from the compared equations, which then results in the variety for the energy eigenvalue
and eigenfunctions with the varieties of the parameters of the potential. This simple and
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Figure 2. The ground state wavefunctionsR(1)0 (r) as a function ofr for the potential (2) with
the same parameter values in two dimensions. They-axis denotes the values of wavefunctions
and thex-axis denotes the variabler.

intuitive method is easily generalized. Other studies, for the sextic potential and the octic
potential as well as the inverse potential in two dimensions are in progress.
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